jimki

Exploring The Role Of Mitochondria In Alzheimer With Network Pharmacology: A Bioinformatics Analysis

Authors

DOI:

https://doi.org/10.53366/jimki.v12i2.1051

Keywords:

Alzheimer, bioinformatics, mitochondria, network analysis, protein-protein interaction

Abstract

ABSTRACT

Alzheimer’s disease (AD) is a progressive neurodegenerative disease marked by the pathological accumulation of beta-amyloid peptide and hyperphosphorylated tau. Growing body of evidence indicates that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, by inducing neurotoxicity through the formation of oxidative stress and reactive oxygen species (ROS). This study aims to investigate relevant mitochondrial proteins in Alzheimer by employing network pharmacology. Protein-coding genes associated with AD were identified from the GeneCards database, extracting only proteins scoring ?1 in relevancy. Datasets associated with mitochondria were extracted from the STRING database. 632 overlapping proteins from both keywords were further enriched and topologically analyzed. This study employed enrichment analyses using ShinyGO to identify relevant biological, cellular, and molecular processes, in addition to disease pathways. Topology analyses were conducted through STRING and Cytoscape by implementing four different centrality parameters and clustering, the proteins were further curated to obtain pivotal proteins in AD and their dysregulation. Aligned with our enrichment analyses, the proteins topologically relevant were components of the mitochondrial oxidative phosphorylation (OXPHOS) pathway, crucial to the respiratory electron transport chain and ATP synthesis system. This study provides a foundation for the discovery of multi-target drugs in AD therapy.

Keywords: Alzheimer, bioinformatics, mitochondria, network analysis, protein-protein interaction.

References

1. Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, et al. Alzheimer’s disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med. 2024;11:1474043.

2. Alzheimer Association Report. 2025 Alzheimer’s disease facts and figures. Alzheimers Dement [Internet]. 2025 [cited 2025 Nov 21];21(4):e70235. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/alz.70235

3. Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J Prev Alzheimers Dis. 2021;8(3):313–21.

4. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell. 2019 Oct 3;179(2):312–39.

5. Kim S, Jung UJ, Kim SR. Role of Oxidative Stress in Blood–Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants [Internet]. 2024 Dec [cited 2025 Nov 21];13(12):1462. Available from: https://www.mdpi.com/2076-3921/13/12/1462

6. Fakorede S, Lateef OM, Garuba WA, Akosile PO, Okon DA, Aborode AT. Dual impact of neuroinflammation on cognitive and motor impairments in Alzheimer’s disease. J Alzheimers Dis Rep [Internet]. 2025 Jan 1 [cited 2025 Nov 21];9:25424823251341870. Available from: https://doi.org/10.1177/25424823251341870

7. Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023 Feb 16;186(4):693–714.

8. Ashleigh T, Swerdlow RH, Beal MF. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement J Alzheimers Assoc. 2023 Jan;19(1):333–42.

9. Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res. 2018 May;131:87–101.

10. Zilocchi M, Moutaoufik MT, Jessulat M, Phanse S, Aly KA, Babu M. Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Rev Proteomics. 2020 Feb;17(2):119–36.

11. Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci. 2018 Jan 19;19(2):63–80.

12. Rangaraju V, Lauterbach M, Schuman EM. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell. 2019 Jan 10;176(1–2):73-84.e15.

13. Zhang S, Zhao J, Quan Z, Li H, Qing H. Mitochondria and Other Organelles in Neural Development and Their Potential as Therapeutic Targets in Neurodegenerative Diseases. Front Neurosci [Internet]. 2022 Apr 5 [cited 2025 Nov 21];16:853911. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9016280/

14. Reiss AB, Gulkarov S, Jacob B, Srivastava A, Pinkhasov A, Gomolin IH, et al. Mitochondria in Alzheimer’s Disease Pathogenesis. Life [Internet]. 2024 Feb [cited 2025 Nov 21];14(2):196. Available from: https://www.mdpi.com/2075-1729/14/2/196

15. Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer’s Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci [Internet]. 2024 Jan [cited 2025 Nov 21];25(21):11720. Available from: https://www.mdpi.com/1422-0067/25/21/11720

16. Reutzel M, Grewal R, Joppe A, Eckert GP. Age-Dependent Alterations of Cognition, Mitochondrial Function, and Beta-Amyloid Deposition in a Murine Model of Alzheimer’s Disease—A Longitudinal Study. Front Aging Neurosci [Internet]. 2022 May 2 [cited 2025 Nov 21];14. Available from: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.875989/full

17. Oliver D, Reddy PH. Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases. Cells. 2019 Aug 23;8(9).

18. Rostagno AA. Pathogenesis of Alzheimer’s Disease. Int J Mol Sci. 2023;24(1):107.

19. Zhu H, Mehta M, Huang SM, Wang Y. Toward Bridging Unmet Medical Need in Early Alzheimer’s Disease: An Evaluation of Beta-Amyloid (Aβ) Plaque Burden as a Potential Drug Development Tool. Clin Pharmacol Ther. 2022 Apr;111(4):728–31.

20. Beshir SA, Hussain N, Menon VB, Al Haddad AHI, Al Zeer RAK, Elnour AA. Advancements and Challenges in Antiamyloid Therapy for Alzheimer’s Disease: A Comprehensive Review. Int J Alzheimers Dis. 2024;2024:2052142.

21. Wang XL, Feng ST, Wang ZZ, Chen NH, Zhang Y. Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases. Pharmacol Res. 2021 Mar;165:105433.

22. Noor F, Tahir Ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharm Basel Switz. 2022 May 4;15(5):572.

23. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: the human gene integrator. Database [Internet]. 2010 Jan 1 [cited 2025 Nov 23];2010:baq020. Available from: https://doi.org/10.1093/database/baq020

24. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(1 D):D638–46.

25. Li M, Li D, Tang Y, Wu F, Wang J. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks. Int J Mol Sci [Internet]. 2017 Sept [cited 2025 Nov 23];18(9):1880. Available from: https://www.mdpi.com/1422-0067/18/9/1880

26. Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems [Internet]. 2015 Jan 1 [cited 2025 Nov 23];127:67–72. Available from: https://www.sciencedirect.com/science/article/pii/S0303264714001944

27. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017 Jan 4;45(D1):D158–69.

28. Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023 May 4;224(1):iyad031.

29. Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 2025 Jan 6;53(D1):D672–7.

30. Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021 Jan 8;49(D1):D1541–7.

31. Nelson DL, Cox MM, Nelson DL. Lehninger principles of biochemistry. Sixth edition. Lehninger AL, editor. Basingstoke: Macmillan Higher Education; 2013.

32. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics [Internet]. 2020 Apr 15 [cited 2025 Nov 23];36(8):2628–9. Available from: https://doi.org/10.1093/bioinformatics/btz931

33. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res [Internet]. 2000 Jan 1 [cited 2025 Nov 23];28(1):27–30. Available from: https://doi.org/10.1093/nar/28.1.27

34. Deng Y, Dong Y, Zhang S, Feng Y. Targeting mitochondrial homeostasis in the treatment of non-alcoholic fatty liver disease: a review. Front Pharmacol [Internet]. 2024 Sept 3 [cited 2025 Nov 28];15. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1463187/full

35. Gollmer J, Zirlik A, Bugger H. Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes Metab J. 2020 Feb;44(1):33–53.

36. Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci [Internet]. 2022 Oct 10 [cited 2025 Nov 28];14:937486. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9588915/

37. Srivastava S, Ahmad R, Khare SK. Alzheimer’s disease and its treatment by different approaches: A review. Eur J Med Chem. 2021 Apr 15;216:113320.

38. Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener [Internet]. 2020 May 29 [cited 2025 Nov 28];15(1):30. Available from: https://doi.org/10.1186/s13024-020-00376-6

39. Kawamata H, Manfredi G. Proteinopathies and OXPHOS dysfunction in neurodegenerative diseases. J Cell Biol [Internet]. 2017 Nov 22 [cited 2025 Nov 28];216(12):3917–29. Available from: https://doi.org/10.1083/jcb.201709172

40. Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front Aging Neurosci. 2021;13:617588.

41. Sonsungsan P, Aimauthon S, Sriwichai N, Namchaiw P. Unveiling mitochondria as central components driving cognitive decline in alzheimer’s disease through cross-transcriptomic analysis of hippocampus and entorhinal cortex microarray datasets. Heliyon [Internet]. 2024 Oct 30 [cited 2025 Nov 28];10(20):e39378. Available from: https://www.sciencedirect.com/science/article/pii/S2405844024154096

42. Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol [Internet]. 2021 July 1 [cited 2025 Nov 29];9. Available from: https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.675465/full

43. Sissler M, González-Serrano LE, Westhof E. Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends Mol Med [Internet]. 2017 Aug 1 [cited 2025 Nov 29];23(8):693–708. Available from: https://www.sciencedirect.com/science/article/pii/S1471491417300990

44. Gabrielli AP, Novikova L, Ranjan A, Wang X, Ernst NJ, Abeykoon D, et al. Inhibiting mtDNA transcript translation alters Alzheimer’s disease-associated biology. Alzheimers Dement J Alzheimers Assoc. 2024 Dec;20(12):8429–43.

45. Shafik AM, Zhou H, Lim J, Dickinson B, Jin P. Dysregulated mitochondrial and cytosolic tRNA m1A methylation in Alzheimer’s disease. Hum Mol Genet. 2022 May 19;31(10):1673–80.

46. Szrok-Jurga S, Turyn J, Hebanowska A, Swierczynski J, Czumaj A, Sledzinski T, et al. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int J Mol Sci [Internet]. 2023 Jan [cited 2025 Nov 28];24(18):13977. Available from: https://www.mdpi.com/1422-0067/24/18/13977

47. Ju Y, Li S, Kong X, Zhao Q. Exploring fatty acid metabolism in Alzheimer’s disease: the key role of CPT1A. Sci Rep [Internet]. 2024 Dec 28 [cited 2025 Nov 28];14(1):31483. Available from: https://www.nature.com/articles/s41598-024-82999-z

48. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020 Feb;23(2):194–208.

49. Tanaka Y, Minami Y, Endo M. Ror1 promotes PPARα-mediated fatty acid metabolism in astrocytes. Genes Cells Devoted Mol Cell Mech. 2023 Apr;28(4):307–18.

Downloads

Published

2025-12-29

How to Cite

Exploring The Role Of Mitochondria In Alzheimer With Network Pharmacology: A Bioinformatics Analysis. (2025). JIMKI: Jurnal Ilmiah Mahasiswa Kedokteran Indonesia, 12(2), 608-625. https://doi.org/10.53366/jimki.v12i2.1051